Mathematik: Abitur

Bundesland: **Baden-Württemberg** (berufliches Gymnasium)

Bereich: Analysis – Integralrechnung

Thema: Berechnung von Flächeninhalten oberhalb der x-Achse

Theorie

Sei $f: [a; b] \to \mathbb{R}$ eine integrierbare nichtnegative Funktion. Dann bezeichnet das bestimmte Integral

$$A = \int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

den Inhalt der Fläche, die das Schaubild von f mit der x-Achse einschließt, wobei wir a und b als Integrationsgrenzen bezeichnen (\rightarrow Abb. 1).

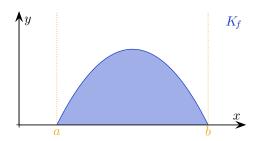


Abbildung 1: Fläche A mit Grenzen a und b

Aufgaben zum Abi-Check

- 1. Berechnen Sie den Inhalt der Fläche, die das Schaubild K_f von $f(x) = -\frac{1}{2}x^2 + 3x \frac{5}{2}$ für $x \in [2; 4]$ mit der x-Achse einschließt.
- •• 2. In Abb. 2 ist das Schaubild *K* einer Funktion *f* eingezeichnet. Überprüfen Sie durch Schätzen des Flächeninhalts, ob die folgenden Aussagen richtig oder falsch sind.

(a)
$$\int_{-1}^{0} f(x) dx > 4$$

(b)
$$\int_0^3 f(x) \, \mathrm{d}x > 6$$

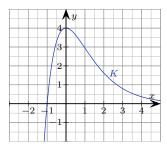


Abbildung 2: Schaubild zu Aufgabe 2

3. Das Schaubild einer ganzrationalen Funktion dritten Grades hat die Nullstellen $x_1 = -3$, $x_2 = 3$ sowie den y-Achsenabschnitt 3. Zudem schließt es mit den Koordinatenachsen im 1. Quadranten eine Fläche mit dem Inhalt A = 8,25 ein. Bestimmen Sie den Funktionsterm von f.

Mathematik: Abitur

Bundesland: Baden-Württemberg (berufliches Gymnasium)

Bereich: Analysis – Integralrechnung

Thema: Berechnung von Flächeninhalten oberhalb der x-Achse

Lösungen

1. Wir bestimmen eine Stammfunktion F von f. $F(x) = -\frac{1}{6}x^3 + \frac{3}{2}x^2 - \frac{5}{2}x$. Dann setzen wir die obere und untere Grenze in das bestimmte Integral ein und berechnen den konkreten Zahlenwert. a = 2, b = 4. Wir berechnen

$$A = \int_{2}^{4} \left(-\frac{1}{2}x^{2} + 3x - \frac{5}{2} \right) dx = \left[-\frac{1}{6}x^{3} + \frac{3}{2}x^{2} - \frac{5}{2}x \right]_{2}^{4}$$
$$= \left(-\frac{1}{6} \cdot 4^{3} + \frac{3}{2} \cdot 4^{2} - \frac{5}{2} \cdot 4 \right) - \left(-\frac{1}{6} \cdot 2^{3} + \frac{3}{2} \cdot 2^{2} - \frac{5}{2} \cdot 2 \right) = \frac{10}{3} - \left(-\frac{1}{3} \right) = \frac{11}{3} \approx 3,67.$$

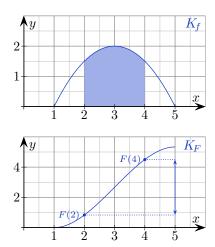


Abbildung 3: Berechnung des Flächeninhaltes

- 2. (a) Diese Aussage ist falsch, da die Fläche komplett von einem Rechteck mit den Eckpunkten $P(-1 \mid 0)$, $Q(-1 \mid 4)$, $R(0 \mid 4)$ und $S(0 \mid 0)$ und dem Flächeninhalt 4 umschlossen ist.
 - (b) Diese Aussage ist richtig, da in der Fläche ein Dreieck mit den Eckpunkten $P(0 \mid 0)$, $Q(0 \mid 4)$ und $R(3 \mid 0)$ mit Flächeninhalt 6 enthalten ist.
- **3.** Wir schreiben $f(x) = ax^3 + bx^2 + cx + d$ und berechnen: I: $f(0) = 3 \Rightarrow d = 3$. Außerdem gilt II: $f(3) = 0 \Rightarrow 27a + 9b + 3c + 3 = 0$, sowie III: $f(-3) = 0 \Rightarrow -27a + 9b 3c + 3 = 0$. Durch Addition beider Gleichungen erhalten wir $18b + 6 = 0 \Rightarrow b = -\frac{1}{3}$. Lösen wir II nach c auf, so erhalten wir c = -9a und somit $f(x) = ax^3 \frac{1}{3}x^2 9ax + 3$. Die letzte Bedingung liefert

$$\int_0^3 f(x) dx = \int_0^3 ax^3 - \frac{1}{3}x^2 - 9ax + 3 dx = \left[\frac{1}{4}ax^4 - \frac{1}{9}x^3 - \frac{9}{2}ax^2 + 3x \right]_0^3$$
$$= \left(\frac{81}{4}a - 3 - \frac{81}{2}a + 9 \right) - 0 = -\frac{81}{4}a + 6 = 8,25 \Rightarrow a = -\frac{1}{9} \Rightarrow c = 1.$$

Somit gilt: $f(x) = -\frac{1}{9}x^3 - \frac{1}{3}x^2 + x + 3$.