Mathematik: Abitur

Bundesland: Baden-Württemberg (berufliches Gymnasium)

Bereich: Vektorgeometrie Thema: Skalarprodukt

Aufgaben zum Abi-Check

• 1. Berechnen Sie das Skalarprodukt der Vektoren $\vec{a} = \begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 7 \\ 1 \\ 3 \end{pmatrix}$.

•• **2.** Für welche(n) Wert(e) von k stehen die gegebenen Vektoren $\vec{a} = \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$ und $\vec{b}_k = \begin{pmatrix} k \\ 5 \\ 2 \end{pmatrix}$ senkrecht zueinander? Berechnen Sie exakt.

••• 3. In welchem Eckpunkt hat das Dreieck ABC mit den Punkten A $(4 \mid -2 \mid 1)$, B $(5 \mid 2 \mid 2)$ und C $(3 \mid 3 \mid 0)$ einen rechten Winkel? Begründen Sie durch Rechnung.

Mathematik: Abitur

Bundesland: **Baden-Württemberg** (berufliches Gymnasium)

Bereich: Vektorgeometrie Thema: Skalarprodukt

Lösungen

1.
$$\langle \vec{a}, \vec{b} \rangle = -1 \cdot 7 + 2 \cdot 1 + 6 \cdot 3 = 13$$

2.
$$\langle \vec{a}, \overrightarrow{b_k} \rangle = 3k + (-4) \cdot 5 + 1 \cdot 2 = 0 \Rightarrow 3k - 18 = 0 \Rightarrow k = 6$$

3.
$$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$$
, $\overrightarrow{AC} = \begin{pmatrix} -1 \\ 5 \\ -1 \end{pmatrix}$, $\overrightarrow{BC} = \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix}$. Der rechte Winkel ist im Punkt B. *Lösungsweg 1*: Es gilt

der Satz des Pythagoras: $|\overrightarrow{AB}|^2 + |\overrightarrow{BC}|^2 = 18 + 9 = 27 = |\overrightarrow{AC}|^2$. Lösungsweg 2: Es gilt: $\langle \overrightarrow{AB}, \overrightarrow{BC} \rangle = 1 \cdot (-2) + 4 \cdot 1 + 1 \cdot (-2) = 0$.